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Abstract

We study the ability of different classes of voting rules to induce agents to report
their preferences truthfully, if agents want to avoid regret. First, we show that regret-
free truth-telling is equivalent to strategy-proofness among tops-only rules. Then, we
focus on three important families of (non-tops-only) voting methods: maxmin, scor-
ing, and Condorcet consistent ones. We prove positive and negative results for both
neutral and anonymous versions of maxmin and scoring rules. In several instances we
provide necessary and sufficient conditions. We also show that Condorcet consistent
rules that satisfy a mild monotonicity requirement are not regret-free truth-telling.
Successive elimination rules fail to be regret-free truth-telling despite not satisfying
the monotonicity condition. Lastly, we provide two characterizations for the case of
three alternatives and two agents.
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1 Introduction

Voting rules are procedures that allow a group of agents to select an alternative, among
many, according to their preferences. Naturally, their vulnerability to manipulation is a
primary concern. Thus, it is desirable that voting rules are strategy-proof, meaning that
it is always in the best interest of agents to report their preferences truthfully regardless
of the behavior of others.

Unfortunately, outside of a dictatorship, there is no strategy-proof voting rule when
more than two alternatives, and all possible preferences over alternatives, are consid-
ered (Gibbard, 1973; Satterthwaite, 1975). Despite this negative result, lack of strategy-
proofness does not mean that a voting rule is easy to manipulate nor that agents have the
information to safely do so. The required manipulation may have to be specifically tai-
lored to the reported preferences of all other participants. Given that agents typically do
not have access to such information in practice, we approach the incentives to manipulate
from a different perspective; one that allows agents to evaluate the potential outcomes of
a manipulation according to the partial information they hold and the inferences they can
make based on what they observe.

We examine the incentives to report preferences truthfully from the lenses of regret
avoidance, in the sense of Fernandez (2020). Regret is intimately connected to (i) choice,
and (ii) counterfactuals; see Zeelenberg and Van Dijk (2007). We assume that an agent
knows their own preference over alternatives and the voting rule used to select an out-
come. Upon observing the outcome, the agent infers which were the possible preferences
profiles reported by the other agents. An agent suffers regret if the chosen report is dom-
inated ex-post. A voting rule is regret-free truth-telling if it guarantees that no agent
regrets reporting their preferences truthfully.

First, we show that if the voting rule only considers the most preferred alternative
reported by each agent (i.e. it is tops-only), then regret-free truth-telling is equivalent to
strategy-proofness. This equivalence implies that: (i) for problems with only two alter-
natives, extended majority voting rules are the only regret-free truth-telling rules; and,
(ii) there are no non-dictatorial tops-only regret-free truth-telling voting rules, on the uni-
versal domain. Thus, we examine non-tops-only rules when there are more than two
alternatives. We study whether three of the most important families of non-tops-only
voting methods satisfy regret-free truth-telling: (i) maxmin methods, (ii) scoring meth-
ods, and (iii) Condorcet consistent methods. Maxmin methods select those alternatives
that “make the least happy agent(s) as happy as possible” (Rawls, 1971). Scoring methods
assign points to each alternative according to the rank it has in agents’ preferences and
selects one of the alternatives with highest score. Condorcet consistent methods select the
pairwise majority winner (Condorcet winner) whenever one exists. To resolve potential
multiplicity in the scoring and maxmin methods we consider two classical tie-breakings.
One is defined by picking the preference of a fixed agent (neutral). The other is defined
by a fixed order of the alternatives (anonymous).

Given n agents and m alternatives, we show that all neutral maxmin rules are regret-
free truth-telling. Anonymous maxmin rules are regret-free truth-telling if and only if n ≥
m − 1 or n divides m − 1. We also obtain general positive results for the negative plurality
rule, a special scoring rule in which all the rank positions get one point except the last one
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which gets zero. The results are analogous to those of maxmin rules: all neutral negative
plurality rules are regret-free truth-telling, whereas an anonymous negative plurality rule
is regret-free truth-telling if and only if n ≥ m − 1.

For general scoring rules, we provide necessary and sufficient conditions for some
classes of these rules to be regret-free truth-telling. The conditions depend intimately on
the highest position/rank where the score is not maximal. Among others, these include
k-approval rules. Notably, Borda, plurality and Dowdall rules, as well as all efficient and
anonymous rules fail to be regret-free truth-telling.

We find that Condorcet consistent rules are incompatible with regret-free truth-telling
under a mild monotonicity condition. The monotonicity condition says that if an alterna-
tive is ranked below the outcome of the rule for an agent and he changes his preferences
modifying only the ordering of alternatives ranked above the outcome, then such alter-
native continues not to be chosen. In particular, we get that the six famous Condorcet
consistent rules associated with the names of Simpson, Copeland, Young, Dodgson, Fish-
burn and Black (in both anonymous and neutral versions) are monotone, and therefore
not regret-free truth-telling.1 We also show that a family of non-monotone Condorcet
consistent rules, the successive elimination rules, are not regret-free truth-telling either.

Finally, for the case with two agents and three alternatives, we present two charac-
terization results. The first one says that a rule is regret-free truth-telling, efficient, and
anonymous if and only if it is either a successive elimination or an anonymous maxmin
rule in which the tie-breaking device is an antisymmetric and complete (not necessar-
ily transitive) binary relation. The second one says that a rule is regret-free truth-telling
and neutral if and only if it is a dictatorship or a maxmin rule with a specific type of
tie-breaking that preserves neutrality.

1.1 Related literature

Two main approaches have been taken to circumvent Gibbard-Satterthwaite’s impossibil-
ity theorem. The first approach restricts the domain of preferences that agents can have
over alternatives (see Barberà, 2011, and references therein). This paper contributes to the
literature following the second approach, that is, to consider different notions of strategic
behavior.2

Among the papers considering weakenings of strategy-proofness, a recent literature
has emerged that incorporates the (possibly) partial information held by agents. Notably,
Reijngoud and Endriss (2012) and Endriss et al. (2016), Gori (2021), and Troyan and Mor-
rill (2020) and Aziz and Lam (2021), which we discuss in turn.

Reijngoud and Endriss (2012) and Endriss et al. (2016) study when an agent has an
incentive to manipulate different voting rules subject to different information functions.
Importantly, there, the concept of winner information function leads to a property equiv-
alent to regret-free truth-telling.

1For the anonymous Simpson and Copeland rules, these results have been previously obtained by En-
driss et al. (2016).

2Early examples of this approach include Farquharson (1969)’s sophisticated voting, Moulin (1979)’s
dominance-solvable voting schemes, as well as Barberà and Dutta (1982) protective strategies and Moulin
(1981) prudent strategies.
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Recently, Gori (2021) studies in detail a special case of an information function, where
the information about the preferences of the other individuals in the society is limited
to the knowledge, for every pair of alternatives, of the number of people preferring the
first alternative to the second one. This notion is called WMG-strategy-proofness by Gori
(2021). In that paper, there are a positive result showing a class of Pareto optimal, WMG-
strategy-proof and non-dictatorial voting functions; and a negative result proving that,
when at least three alternatives are considered, no Pareto optimal and anonymous voting
function is WMG-strategy-proof.

Troyan and Morrill (2020) introduce the concept of obvious manipulation in the con-
text of market design, while Aziz and Lam (2021) apply it in the context of voting. Troyan
and Morrill (2020) assume that an agent knows the possible outcomes of the mechanism
conditional on his own declaration of preferences, and define a deviation from the truth
to be an obvious manipulation if either the best possible outcome under the deviation
is strictly better than the best possible outcome under truth-telling, or the worst possi-
ble outcome under the deviation is strictly better than the worst possible outcome under
truth-telling. A mechanism that does not allow any obvious manipulation is called not-
obviously-manipulable. Aziz and Lam (2021) present a general sufficient condition for
a voting rule to be not-obviously-manipulable. They show that Condorcet consistent as
well as some other strict scoring rules are not-obviously-manipulable. Furthermore, for
the class of k-approval voting rules, they give necessary and sufficient conditions for ob-
vious manipulability.

The rest of the paper is organized as follows. In Section 2, we introduce the model and
the property of regret-free truth-telling. We show the equivalence of regret-free truth-
telling and strategy-proofness for tops-only rules in Section 3, where we also characterize
extended majority voting rules as the only regret-free truth-telling rules when there are
only two alternatives to choose from. In Section 4.1, we provide necessary and sufficient
conditions for maxmin rules to be regret-free truth-telling. Section 4.2 we provide positive
and negative results regarding scoring rules. In Section 4.3, we present negative results
for Condorcet consistent rules. The special case with two agents and three alternatives is
analyzed in Section 5, where two characterizations are presented.

2 Preliminaries

2.1 Model

A set of agents N = {1, . . . , n}, with n ≥ 2, has to choose an alternative from a finite and
given set X, with |X| = m ≥ 2. Each agent i ∈ N has a strict preference Pi over X. We
denote by Ri the weak preference over X associated to Pi; i.e., for all x, y ∈ X, xRiy if and
only if either x = y or xPiy. Let P be the set of all strict preferences over X. A (preference)
profile is a n-tuple P = (P1, . . . , Pn) ∈ Pn, an ordered list of n preferences, one for each
agent. Given a profile P and an agent i, P−i denotes the subprofile obtained by deleting
Pi from P. For each Pi ∈ P , denote by tk(Pi) to the alternative in the k-th position (from
bottom to top). Many times we write t(Pi) instead of tm(Pi), and refer to it as the top of Pi.
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We often also write Pi as an ordered list

Pi : tm(Pi), tm−1(Pi), . . . , t1(Pi).

A (voting) rule is a function f : Pn → X that selects for each preference profile P ∈ Pn

an alternative f (P) ∈ X. We assume throughout that a voting rule is an onto function.
Next, we define several classical properties that a rule may satisfy and that we use in the
sequel. A rule f is:

• strategy-proof if agents can never induce a strictly preferred outcome by misrepre-
senting their preferences; namely, for each P ∈ Pn, each i ∈ N and each P′

i ∈ P ,

f (P)Ri f (P′
i , P−i);

• efficient if, for each P ∈ Pn, there is no y ∈ X such that yPi f (P) for each i ∈ N;

• tops-only if P, P′ ∈ Pn such that t(Pi) = t(P′
i ) for each i ∈ N imply f (P) = f (P′);

• dictatorial if there exists i ∈ N such that for each P ∈ Pn, f (P) = t(Pi). In a dicta-
torial rule, in each profile of preferences, the same agent selects his most preferred
outcome;

• unanimous if t(Pi) = x for each i ∈ N imply f (P) = x. Unanimity is a natural
and weak form of efficiency: if all agents consider an alternative as being the most-
preferred one, the rule should select it;

• anonymous if for each P ∈ Pn and each bijection π : N → N, f (P) = f (Pπ) where
for each i ∈ N, Pπ

i = Pπ(i). Anonymity requires that the rule treats all agents equally
because the social outcome is selected without paying attention to the identities of
the agents;

• neutral if for each P ∈ Pn and each bijection π : X → X, π( f (P)) = f (πP) where
πPi : π(t(Pi)), π(tm−1(Pi)), ..., π(t1(Pi)).

In general, the axioms of anonymity and neutrality are incompatible for voting rules.
A classical way to address such incompatibility is to consider rules defined in two stages
as follows:3

(i) First, consider a voting correspondence Y : Pn → 2X \ {∅} that for each preference
profile P ∈ Pn chooses a (non-empty) subset Y(P) ⊆ X, and assume that Y satisfies
both anonymity and neutrality.

(ii) Second, given P ∈ Pn, consider a strict order on X and choose the maximal element
according to that order in Y(P). There are two classical selections of such an order,
one to preserve anonymity and the other to preserve neutrality:

3“In practice, we will be happy with (voting) correspondences that respect the three principles (ef-
ficiency, anonymity and neutrality). If a deterministic election is called for, we will use either a non-
anonymous tie-breaking rule or a non-neutral one” (see Moulin, 1991, p.234).
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(a) The strict order ≻ is independent of P and is part of the rule’s definition. In
this case anonymity is preserved and the rule is defined by4

f (P) = max
≻

Y(P). (1)

(b) There exists an agent i ∈ N such that, for each P ∈ P , the strict order we
consider is Pi. In this case, neutrality is preserved and the rule is defined by

f (P) = max
Pi

Y(P). (2)

From Section 4 onward, we study rules that can be defined by this two-stage proce-
dure. This way to define a rule is flexible enough to encompass many well-known and
long-studied families of rules.

2.2 Regret-free truth-telling

A regret-free truth-telling rule provides incentives to report preferences truthfully if agents
want to avoid regret. When observing an outcome, an agent regrets his report if it is dom-
inated ex-post. That is, if there is an alternative report that would have guaranteed him
the same or a better outcome for any preference report of others, consistent with his ob-
servation. We can then define a rule to be regret-free truth-telling as one in which no
agent ever regrets reporting their preferences truthfully. Equivalently, given an observed
outcome after reporting his preferences truthfully, if the agent could have done better
through an alternative report for some configuration of reports of others consistent with
his observation, then, that same alternative report could have done worse for another
configuration of reports consistent with his observation. Formally,

Definition 1. The rule f : Pn → X is regret-free truth-telling if for each i ∈ N, each P ∈ Pn,
and each P′

i ∈ P such that f (P′
i , P−i)Pi f (P), there is P⋆

−i ∈ Pn−1 such that

f (Pi, P⋆
−i) = f (P) and f (Pi, P⋆

−i)Pi f (P′
i , P⋆

−i).

3 Tops-only rules and the case of two alternatives

It is clear that if a rule is strategy-proof, then it is also regret-free truth-telling. Our first
result states that the converse is also true for tops-only rules.5

Proposition 1. If a rule is regret-free truth-telling and tops-only, then it is strategy-proof.

Proof. Let f : Pn → X be a regret-free truth-telling and tops-only rule. Assume f is not
strategy-proof. Then, there are P ∈ Pn, i ∈ N, and P′

i ∈ P such that f (P′
i , P−i)Pi f (P). Let

4Throughout the paper, given a strict order > defined on a set A and a subset B ⊆ A, we denote by
max> B to the maximum element in set B according to order >.

5The result holds regardless of whether the voting rule is onto.

6



P̃i ∈ P be such that t(P̃i) = t(Pi) and t1(P̃i) = f (P). Since f is tops-only, f (P̃i, P−i) = f (P).
Therefore, since t1(P̃i) = f (P), it follows that

f (P′
i , P−i)P̃i f (P̃i, P−i). (3)

Let P⋆
−i ∈ Pn−1 be such that f (P̃i, P⋆

−i) = f (P̃i, P−i). Since t1(P̃i) = f (P) = f (P̃i, P−i), we
have

f (P′
i , P⋆

−i)R̃i f (P̃i, P⋆
−i). (4)

By (3) and (4), f is not regret-free truth-telling.

The result, in turn, leads to a complete characterization of the class of regret-free truth-
telling rules for the case of two alternatives. In order to present it, we first need to define
the family of extended majority voting rules on {x, y}.6 Fix w ∈ {x, y} and let 2N denote
the family of all subsets of N, referred to as coalitions. A family Cw ⊆ 2N of coalitions is
a committee for w if it satisfies the following monotonicity property: S ∈ Cw and S ⊊ T
imply T ∈ Cw. The elements in Cw are called winning coalitions (for w).

Definition 2. A rule f : Pn → {x, y} is an extended majority voting rule if there is a
committee Cx for x with the property that, for each P ∈ Pn,

f (P) = x if and only if {i ∈ N : t(Pi) = x} ∈ Cx.

The following corollary provides the characterization result.

Corollary 1. Assume m = 2. Then,

(i) A rule is regret-free truth-telling if and only if it is strategy-proof;

(ii) A rule is regret-free truth-telling if and only it is an extended majority voting rule.

Proof. (i) If f is strategy-proof it is clear that f is regret-free truth-telling. If f is regret-free
truth-telling, since when m = 2 every rule is tops-only, f is strategy-proof by Proposition
1. (ii) It follows from (i) and Moulin (1980).

Corollary 2. Assume m > 2. A rule is regret-free truth-telling and tops-only if and only if it is a
dictatorship.

Proof. It follows from Proposition 1 and Gibbard-Satterthwaite’s Theorem.

4 Non-tops-only rules and more than two alternatives

From now on, we assume that m > 2.
6These rules are equivalent to the ones presented in Moulin (1980), where fixed ballots are used to de-

scribe them instead of committees.
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4.1 Maxmin rules

Voting rules in class of maxmin methods select those alternatives that “make the least
happy agents as happy as possible” (Rawls, 1971). Given P ∈ Pn and x ∈ X, the minimal
position of x according to P is defined by

mp(x, P) = min{k : there exists i ∈ N such that x = tk(Pi)}.

An alternative is a maxmin winner if there is no other alternative with higher minimal
position. We denote the set of maxmin winners according to P as M(P). Namely,

M(P) = {x ∈ X : mp(x, P) ≥ mp(y, P) for each y ∈ X}.

The idea of making the least happy agents as happy as possible is captured by rules
that pick, for each preference profile, a maxmin winner for that profile. We study both
anonymous and neutral versions of these rules. Formally,

Definition 3. A rule f : Pn → X is

(i) A-maxmin if there is a strict order ≻ on X such that, for each P ∈ Pn,

f (P) = max
≻

M(P).

(ii) N-maxmin if there is an agent i ∈ N such that, for each P ∈ Pn,

f (P) = max
Pi

M(P).

The following theorem summarizes the positive results concerning regret-free truth-
telling for these rules:

Theorem 1.

(i) An A-maxmin rule is regret-free truth-telling if and only if n ≥ m − 1 or n divides m − 1.

(ii) Any N-maxmin rule is regret-free truth-telling.

Proof. See Appendix A.1.

The idea behind the proof can be explained as follows. First, we analyze A-maxmin
rules. To see that regret-free truth-telling implies n ≥ m − 1 or n divides m − 1, consider
an A-maxmin rule in which the tie-breaking has a and b as first and second alternatives,
respectively, and alternative z as the last one.

Suppose that agent 1 has the preference P1 : b, . . . , a, z, . . . , that he reports truthfully
and that the outcome of the rule is a. Among the subprofiles consistent with a, there
are some in which alternatives a and b are maxmin winners with respect to that profile,
and the outcome is a due to the tie-breaking. For any such subprofile, agent 1 could have
generated a better outcome by interchanging the order of alternatives a and b in his report.
Namely, a would not longer be among the maxmin winners, whereas b would remain a
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maxmin winner and be selected by the rule due to the tie-breaking. The subprofiles where
both a and b are maxmin winners, are not the only subprofiles consistent with observing
the outcome of the rule being a. However, for any subprofile consistent with outcome a,
agent’s 1 misrepresentation by interchanging a and z results in maxmin winners that are
either z or an alternative that is at least as good a according to agent 1’s preferences.

The main claim is to prove that if neither n ≥ m − 1 nor n divides m − 1, for any
consistent subprofile there exists a maxmin winner different from z when agent 1 mis-
represents his preferences by interchanging a and z. Therefore, as z is the last alternative
in the tie-breaking and, as we said, the maxmin winners different from z under the mis-
representation and any consistent subprofile are always at least as good as a in the true
preference, the agent regrets truth-telling.

Next, we argue that A-maxmin rules such that n ≥ m − 1 or n divides m − 1 and
N-maxmin rules are regret-free truth-telling. First, in both cases we prove that in any
profitable misrepresentation the outcome of the rule under truth-telling, f (P), has to be
in a lower position than the one it has in the true preference of the agent. Therefore,
in the misrepresentation there is an alternative x that is less preferred than f (P) in the
true preference that is lifted to a position greater or equal to the one f (P) has in the true
preference.

For each case, we construct a subprofile of the other agents such that: (i) it is consistent
with the true preference of the agent and the outcome f (P), and (ii) x is the only maxmin
winner under the misrepresentation and the subprofile. Thus, the agent does not regret
truth-telling.

For an A-maxmin rule such that n ≥ m − 1 the subprofile for the other agents is such
that x and f (P) are the first and second alternatives for each agent, respectively and for
each alternative different from x and f (P) there is an agent that has that alternative as his
bottom alternative.

For an A-maxmin rule such that n divides m − 1, the definition of the subprofile is
more complicated but a similar argument to the one presented in the previous case can
be performed.

Finally, for a N-maxmin rule the subprofile for the other agents is such that f (P) and
x are the first and second alternatives for each agent, respectively, while all the other
alternatives keep their relative rankings. The technical details can be found in Appendix
A.1.

4.2 Scoring rules

Next, we present the family of scoring rules. Given P ∈ Pn and x ∈ X, let N(P, k, x) =
{i ∈ N : tk(Pi) = x} be the set of agents that have alternative x in the k-th position (from
bottom to top) in their preferences, and let n(P, k, x) = |N(P, k, x)| . Let sk be the score
associated to the k-th position (from bottom to top) with s1 ≤ s2 ≤ . . . ≤ sm and s1 < sm.
The score of x ∈ X according to P is defined by

s(P, x) =
m

∑
k=1

[sk · n(P, k, x)].
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The set of scoring winners according to P is

S(P) = {x ∈ X : s(P, x) ≥ s(P, y) for all y ∈ X}.

For future reference, given scores s1 ≤ s2 ≤ . . . ≤ sm, let denote by k⋆ the highest position
where the score is not maximal, i.e., k⋆ is such that s1 ≤ s2 ≤ sk⋆ < sk⋆+1 = . . . = sm.

Definition 4. A rule f : Pn → X is

(i) A-scoring associated to s1 ≤ s2 ≤ . . . ≤ sm if there is an order ≻ on X such that, for each
P ∈ Pn,

f (P) = max
≻

S(P).

(ii) N-scoring associated to s1 ≤ s2 ≤ . . . ≤ sm if there is an agent i ∈ N such that, for each
P ∈ Pn,

f (P) = max
Pi

S(P).

Remark 1. Some of the most well known scoring rules are:

(i) the Borda rule, in which sk = k for k = 1, . . . , m;

(ii) the Dowdall rule, in which sk =
1

m−k+1 for k = 1, . . . , m;

(iii) the k-approval rules, in which 0 = s1 = s2 = . . . = sm−k, sm−k+1 = . . . = sm−1 = sm =
1 for some k such that m − 1 ≥ k ≥ 1, i.e., the top k scores are 1 and the rest are 0. In these
rules, agents are asked to name their k best alternatives, and the alternative with most votes
wins. Note that in this rule k⋆ = m − k.

Within these rules, two subclasses stand out:

(iii.a) the plurality rule, where k = 1. Therefore s1 = s2 = . . . = sm−1 = 0 and sm = 1
(note that k⋆ = m − 1);

(iii.b) the negative plurality rule, where k = m − 1. Therefore s1 = 0 and s2 = . . . =
sm−1 = sm = 1 (note that k⋆ = 1).

Remark 2. If an A-scoring rule is efficient, then sm−1 < sm (i.e., k⋆ = m − 1).

Observe that, by definition, k⋆ ∈ {1, 2, . . . , m − 1}. The next theorems consider the
extreme cases in which k⋆ = 1 and k⋆ = m− 1, and allows us to present conclusive results
about efficient A-scoring rules, the Borda rule, the Dowdall rule, as well as plurality and
negative plurality rules.

Theorem 2.

(i) An A-scoring rule with k⋆ = 1 (i.e., an A-negative plurality rule) is regret-free truth-telling
if and only if n ≥ m − 1.7

7For A-negative plurality rules, Theorem 6 in Reijngoud and Endriss (2012) presents a sufficient (though
not necessary) condition (n + 2 ≥ 2m) guaranteeing regret-free truth-telling. We present an independent
proof that encompasses their result as well.
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(ii) Any N-scoring rule with k⋆ = 1 (i.e., any N-negative plurality rule) is regret-free truth-
telling.

Proof. See Appendix A.2.

The proof of Theorem 2 follows similar ideas to the ones that describe the proof of
Theorem 1.

Theorem 3. Assume n > 2. Then, no (anonymous or neutral) scoring rule with k⋆ = m − 1
(i.e., sm−1 < sm) is regret-free truth-telling.

Proof. See Appendix A.3.

We sketch the proof of Theorem 3 for the case of an odd number of voters. Consider a
scoring rule in which the tie-breaking has a and b as first and second alternatives, respec-
tively, in the anonymous case or agent 1 in the neutral case. Let P ∈ Pn be given by the
following table:

P1 P2 P3 P4 · · · Pt+3 Pt+4 · · · P2t+3
a c b a · · · a b · · · b
c b a b · · · b a · · · a
b a c c · · · c c · · · c
...

...
...

... · · · ...
... · · · ...︸ ︷︷ ︸ ︸ ︷︷ ︸

t agents t agents

Then, the alternatives a and b are scoring winners and the tie-breaking chooses a. Now, as
sm−1 < sm, agent 2 can manipulate the rule by interchanging b and c in his report, because
the outcome of the rule then changes to b. Furthermore, for any profile where agent 2
declares his true preference and the outcome of the rule is a, if agent 2 interchanges b and
c in his report then the outcome of the rule is at least as good as a. Hence, agent 2 regrets
truth-telling.

Corollary 3. Assume n > 2. Then, both anonymous and neutral versions of Borda, plurality, and
Dowdall rules are not regret-free truth-telling. Moreover, no efficient A-scoring rule is regret-free
truth-telling.

From now on, we assume that k⋆ is such that 1 < k⋆ < m − 1. Next, we present some
results for scoring rules by means of two complementary theorems, one of which can be
considered as positive and the other one as negative. These theorems allow us to present
conclusive results about approval rules and scoring rules in which sk⋆−1 = sk⋆ . Theorem 4
focuses on the case k⋆n < m, which encompasses the class of scoring rules where, in any
preference profile, there is always an alternative that gets maximal score. This positive
result gives a necessary and sufficient condition for an A-scoring rule to be regret-free
truth-telling and also states that any N-scoring rule is regret-free truth-telling.

Theorem 4. Assume that n > 2 and k⋆n < m. Then,

(i) An A-scoring rule is regret-free truth-telling if and only if k⋆n = m − 1.
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(ii) Any N-scoring rule is regret-free truth-telling.

Proof. See Appendix A.4.

The main idea of the proof of Theorem 4 is the following. Assume that n > 2 and
k⋆n < m. First, we analyze A-scoring rules. To see that regret-free truth-telling implies
k⋆n = m − 1, consider a scoring rule in which the tie-breaking has a and b as first and
second alternatives, respectively, and z as the last one. Assume k⋆n < m − 1. Then,
for any profile of preferences there are at least two alternatives above position k⋆ in the
preference of each agent. So, there are at least two score winners (with score equal to
n · sm). Let P ∈ Pn be such that P1 : b, . . . , a, z, . . . where z is in the k⋆-th position and
Pj : a, b, . . . for each j ∈ N \ {1}. Now, the argument to show that agent 1 regrets truth-
telling is similar to the one used for Theorem 1 part (i).

Next, we argue that A-scoring rules such that k⋆n = m − 1 and N-scoring rules are
regret-free truth-telling. In each case we prove that in any profitable misrepresentation
of preferences the outcome of the rule under truth-telling, f (P) (must above the k⋆-th
position in the true preference) is moved to the k⋆-th position or below. Therefore, in the
misrepresentation there is an alternative x, that is in the k⋆-th position or below in the true
preference of the agent, that is lifted to a position greater than k⋆.

For an A-scoring rule such that k⋆n = m − 1, consider a profitable manipulation for
an agent and a subprofile for the other agents such that x and f (P) are the first and sec-
ond alternatives for each agent, respectively, and for each alternative different from f (P)
and above the k⋆-th position in the true preference of the agent, there is an agent that has
that alternative in the k⋆-th position or below. By the definition of the subprofile, f (P)
is the only alternative whose score is n · sm and, therefore, it is the outcome under the
true preference and that subprofile. Furthermore, as f (P) is in position k⋆ or below in the
misrepresentation, by the definition of the subprofile the outcome under the misrepresen-
tation and the subprofile must necessarily be an alternative that is in the k⋆-th position or
below in the true preference. Thus, the agent does not regret truth-telling.

For a N-scoring rule, first we prove that the tie-breaking agent does not manipulate.
Then, consider a profitable manipulation for an agent and a subprofile for the other agents
such that x and f (P) are the first and second alternatives for each agent, respectively. By
the definition of the subprofile and the tie-breaking agent, f (P) is the outcome under the
true preference and that subprofile. Furthermore, the outcome under the misrepresenta-
tion and the subprofile is x since it obtains score n · sm and it is the first alternative for the
tie-breaking agent.

Theorem 5 below gives a negative result for the case k⋆n ≥ m when sk⋆−1 = sk⋆ . When
sk⋆−1 ̸= sk⋆ , we believe that the existence of regret-free truth-telling rules in the class
depends sensibly on the specific scores defining each rule.

Theorem 5. Assume that n > 2 and k⋆n ≥ m. Then, there is no regret-free truth-telling scoring
rule (neither anonymous nor neutral) with sk⋆−1 = sk⋆ .

Proof. See Appendix A.5.

The main idea of the proof of Theorem 5 is the following. Assume that n > 2, k⋆n ≥ m,
and sk⋆−1 = sk⋆ . Consider a scoring rule in which the tie-breaking has a and b as first and
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second alternatives, respectively, in the case of an anonymous rule, or in which agent 1
breaks ties when the rule is neutral. As k⋆n ≥ m, it follows that k⋆(n − 1) ≥ m − k⋆, so we
can consider profile P ∈ Pn such that P2 : . . . , b, a, . . . where b is in the k⋆-th position and
Pj : a, b, . . . for each j ∈ N \ {1} and for each alternative above b in the preference of agent
2 there is another agent that has that alternative below the k⋆-th position. In this profile, as
sk⋆−1 = sk⋆ , alternative a has a score greater than or equal to the score of any alternative
above a for agent 2. Then, by the tie-breaking, the rule selects something worse than b
for agent 2. Then, agent 2 can manipulate the rule by misrepresenting his preferences by
interchanging the alternative in the (k⋆ + 1)-th position and b, because now b is a scoring
winner, a is not, and thus the outcome is b. Furthermore, for any profile where agent 2
declares his true preference and the outcome of the rule is f (P) (that is below b for agent
2), if agent 2 misrepresents interchanging as said previously, then the outcome of the rule
is at least as good as f (P). Hence, agent 2 regrets truth-telling.

The previous theorem extends the result of Theorem 3 in Reijngoud and Endriss (2012)
to the case n = 3 and also to the neutral scoring rules (their result only applies when n > 3
in the anonymous case). Our proof is independent of theirs.

Corollary 4. Assume n > 2 and k⋆ > 1. Then,

(i) An A-scoring rule with sk⋆−1 = sk⋆ is regret-free truth-telling if and only if k⋆n = m − 1.
In particular, an anonymous (m − k⋆)-approval rule is regret-free truth-telling if and only
if k⋆n = m − 1.

(ii) An N-scoring rule with sk⋆−1 = sk⋆ is regret-free truth-telling if and only if k⋆n < m. In
particular, a neutral (m − k⋆)-approval rule is regret-free truth-telling if and only if k⋆n <
m.

Corollary 4 (i) contradicts Theorem 2 in Endriss et al. (2016) which states that there
is no anonymous approval rule satisfying regret-free truth-telling. The proof in Endriss
et al. (2016) assumes that there is a preference profile in which the outcome is below the
position k⋆ + 1 for some agent, however, this assumption cannot be met in the case where
k⋆n < m.

4.3 Condorcet consistent rules

Let P ∈ Pn and consider two alternatives a, b ∈ X. Denote by CP(a, b) the number of
agents that prefer a to b according to P, i.e., CP(a, b) = |{i ∈ N : aPib}|. An alternative
a ∈ X is a Condorcet winner according to P if for each alternative b ∈ X \ {a},

CP(a, b) > CP(b, a). (5)

Notice that a Condorcet winner may not always exist but when it does, it is unique. If
(5) holds with weak inequality for each alternative b ∈ X \ {a}, then a is called a weak
Condorcet winner.

Definition 5. A rule f : Pn → X is Condorcet consistent if it chooses the Condorcet winner
whenever it exists.
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Next, we introduce a mild monotonicity condition which says that if an alternative
is below the outcome for an agent and he changes his preferences modifying only the
ordering of alternatives above the outcome, then such alternative continues not to be
chosen. Formally,

Definition 6. Let Pi, P′
i ∈ P and let a ∈ X be such that a = tk(Pi). We say that P′

i is a
monotonic transformation of Pi with respect to a if tk′(Pi) = tk′(P′

i ) for each k′ ≤ k. A rule
f : Pn → X is monotone if, for each P ∈ Pn, each i ∈ N, and each b ∈ X such that f (P)Pib,

f (P′
i , P−i) ̸= b

for each P′
i that is a monotonic transformation of Pi with respect to f (P).

Notice that CP(x, b) = C(P′
i ,P−i)

(x, b) for each x ∈ X \ {b}. Thus, our monotonicity
condition is fully compatible with Condorcet consistency.

Furthermore, our notion of monotonicity is weaker than the well-known Maskin mono-
tonicity. Remember that P′

i ∈ P is a Maskin monotonic transformation of Pi ∈ P with respect
to a ∈ X if xP′

i a implies xPia. Then, f : Pn → X is Maskin monotonic if, for each P ∈ Pn,
f (P′

i , P−i) = f (P) for each P′
i ∈ P that is a Maskin monotonic transformation of Pi with

respect to f (P). It is clear that a monotonic transformation of Pi (according to our defini-
tion) is a Maskin monotonic transformation of Pi.

Besides the intrinsic appeal of our monotonicity condition, this weakening of Maskin’s
property is necessary since Maskin’s monotonicity is incompatible with Condorcet con-
sistency. To see this, let X = {a, b, c} and consider a Condorcet consistent f : P3 → X and
a profile P ∈ P3 given by the following table:

P1 P2 P3
a b c
b c a
c a b

Since there is no Condorcet winner, and without loss of generality, assume f (P) = a. Now,
let P′

1 ∈ P be such that cP′
1bP′

1a. It follows, by Condorcet consistency, that f (P′
1, P−1) = c.

If f is also Maskin monotonic, then f (P′
1, P−1) = c implies f (P) = c, a contradiction.

Our mild monotonicity requirement on Condorcet consistent rules leads to the follow-
ing negative result concerning regret-free truth-telling.

Theorem 6. Assume n /∈ {2, 4}, or n = 4 and m > 3. Then, there is no Condorcet consistent,
monotone and regret-free truth-telling rule.

Proof. See Appendix A.6.

The main ideas behind the proof of Theorem 6 can be illustrated in the three-agent
case, sketched next. Consider profile P ∈ P3 given by the following table:

P1 P2 P3
a b c
b c a
c a b
...

...
...
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In this profile there is no Condorcet winner. Let f (P) be the chosen alternative under
profile P. We can assume, w.l.o.g., that f (P) is worse than b for agent 1. Now, agent 1
can manipulate the rule by interchanging a and b, because the outcome of the rule then
changes to b. Furthermore, for any profile where agent 1 declares his true preference and
the outcome of the rule is f (P) (that is bellow b for agent 1), if agent 1 misrepresents his
preferences by interchanging a and b, then by monotonicity the outcome of the rule is at
least as good as f (P). Hence, agent 1 regrets truth-telling.

Remark 3. When n = 4 and m = 3, the previous impossibility result does not apply. Let
X = {a, b, c}. Given P ∈ Pn and x ∈ X, let bottom(P, x) be the number of agents that have
x in the bottom of their preferences. Now, consider a rule f : P4 → X that, for each P ∈ P4,
selects the Condorcet winner when it exists and, otherwise, the tie-breaking a ≻ b ≻ c is used to
choose an alternative among those that minimize bottom(P, ·) and are preferred by at least two
agents to any other alternative that minimizes bottom(P, ·). This rule is monotone since, given
P ∈ P4 and i ∈ N, when there are three alternatives a monotonic transformation of Pi with
respect to f (P) is different from Pi only when t1(Pi) = f (P), and in this case there is no x ∈ X
such that f (P)Pix. Then, monotonicity is trivially satisfied. To see that this rule is also regret-
free truth-telling, consider profile P ∈ P4 such that, w.l.o.g., P1 : x, y, z. If f (P) = x, agent 1
does not manipulate f . If f (P) = z, then f (P′

1, P−1) = t1(P1) for each P′
1 ∈ P by definition

of the rule, so agent 1 cannot manipulate either. If f (P) = y and agent 1 manipulates f via P′
1,

then f (P′
1, P−1) = x and, by definition of the rule, t1(P′

1) = y. Consider P⋆
−1 ∈ P3 such that

P⋆
2 : y, z, x, P⋆

3 = P⋆
2 , and P⋆

4 : z, y, x. Then, f (P1, P⋆
−1) = y and f (P′

1, P⋆
−1) = z. Therefore,

agent 1 does not regret truth-telling.

Six of the most important Condorcet consistent rules are Simpson, Copeland, Young,
Dodgson, Fishburn and Black rules (see Fishburn, 1977). Each one of these rules uses
pairwise comparison of alternatives in a specific way in order to get a winner alternative
for each profile of preferences. Their definitions are as follows. Given P ∈ Pn,

(i) the Simpson score of alternative a ∈ X is the minimum number CP(a, b) for b ̸= a,

Simpson(P, a) = min
b ̸=a

CP(a, b)

and a Simpson winner is an alternative with highest such score.

(ii) the Copeland score of alternative a ∈ X is the number of pairwise victories minus the
number of pairwise defeats against all other alternatives

Copeland(P, a) = |{b : CP(a, b) > CP(b, a)}| − |{b : CP(b, a) > CP(a, b)}|

and a Copeland winner is an alternative with highest such score.

(iii) the Young score of alternative a ∈ X is the largest cardinality of a subset of voters for
which alternative a is a weak Condorcet winner

Young(P, a) = max
N′⊆N

{
|N′| : {|i ∈ N′ : aPib}| ≥

|N′|
2

for all b ∈ X \ {a}
}

and a Young winner is an alternative with highest such score.
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(iv) the Dodgson score of alternative a ∈ X, Dodgson(P, a), is the fewest inversions8 in the
preferences in P that will make a tie or beat every other alternative in X on the basis
of simple majority, and a Dodgson winner is an alternative with lowest such score.

(v) the Fishburn partial order on X, FP, is defined as follows: aFPb if and only if for each
x ∈ X, CP(x, a) > CP(a, x) implies CP(x, b) > CP(b, x) and there is w ∈ X such
that CP(w, b) > CP(b, w) and CP(a, w) ≥ CP(w, a). A Fishburn winner is a maximal
alternative for FP.

(vi) a Black winner is a Condorcet winner whenever it exists and, otherwise, a Borda win-
ner.9

An anonymous (neutral) Simpson, (Copeland, Young, Dodgson, Fishburn, Black) rule always
chooses a Simpson, (Copeland, Young, Dodgson, Fishburn, Black) winner and uses a
fixed order (agent) as tie-breaker when there are more than one. The following result
shows that the six rules are monotonic.

Corollary 5. Assume n > 2. Then, the Simpson, Copeland, Young, Dodgson, Fishburn and
Black rules are not regret-free truth-telling, regardless of whether we consider their anonymous or
neutral versions.

Proof. See Appendix A.7.

Another interesting class of Condorcet consistent rules which are widely used in prac-
tice, for instance, by the United States Congress to vote upon a motion and its proposed
amendments, is the class of succesive elimination rules (see Chapter 9 of Moulin, 1991,
for more detail). These rules, which consider an order among alternatives and consist of
sequential majority comparisons, are defined as follows.

Definition 7. A rule f : Pn → X is a successive elimination rule with respect to an order ≻
such that a1 ≻ a2 ≻ . . . ≻ am if it operates in the following way. First, a majority vote decides
to eliminate a1 or a2, then a majority vote decides to eliminate the survivor from the first round or
a3, and so on. The same order ≻ is used as tie-breaker in each pairwise comparison, if necessary.

It is clear that a successive elimination rule is Condorcet consistent but it may be not
monotone, as the next example shows.

Example 1. (The successive elimination rule with respect to order a ≻ b ≻ c ≻ d is not mono-
tone). Let P ∈ P5 be given by the following table:

P1 P2 P3 P4 P5
a a c c d
b c d b b
d d a d a
c b b a c

8Let Pi, P′
i ∈ P and let x, y ∈ X. P′

i is an inversion of Pi with respect x and y if xPiy implies yP′
i x.

9A Borda winner is an alternative with highest Borda score.
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Then, f (P) = d. Now, let P′
1 ∈ P be such that P′

1 : b, a, d, c. Then P′
1 is a monotonic transforma-

tion of P1 with respect to d but f (P′
1, P−1) = c, so f is not monotone.

Theorem 7. Assume n > 2. Then, no successive elimination rule is regret-free truth-telling.

Proof. See Appendix A.8.

The main ideas behind the proof of Theorem 7 can be found in the three-agent case,
so we sketch it here. Let f be a successive elimination rule with associated order a ≻ b ≻
c ≻ . . . Consider profile P ∈ P3 given by the following table:

P1 P2 P3
a b c
b c a
... a b

c
...

...

In this profile, the outcome of the rule is c. Now, agent 1 can manipulate the rule by
interchanging a and b, because the outcome of the rule then changes to b. Furthermore,
as c is the worst alternative in the true preference of agent 1, agent 1 regrets truth-telling.

5 Two agents and three alternatives: characterizations

In what follows, we focus in the case where we have only two agents, N = {1, 2}, and
three alternatives, X = {a, b, c}. In this case we can obtain characterizations of the classes
of all: (i) regret-free truth-telling and neutral, and (ii) regret-free truth-telling, efficient,
and anonymous rules. Notice that for the first characterization efficiency is not needed
since it is implied by neutrality and regret-free truth-telling, as we prove next in Theorem
8.

First, observe that with two agents and three alternatives a N-maxmin rule coincides
with:

(i) the N- negative plurality rule; and,

(ii) the N-scoring rule corresponding to s = (s1, s2, s3) = (1, 3, 4).

The following theorem shows that N-maxmin and dictatorships are the only regret-free
truth-telling and neutral rules.

Theorem 8. Assume n = 2 and m = 3. Then, a rule is regret-free truth-telling and neutral if
and only if it is a N-maxmin rule or a dictatorship.

Proof. See Appendix A.9.

A similar result to the previous theorem can be obtained changing neutrality for anonymity.
As efficiency is not a consequence of anonymity and regret-free truth-telling we require it
in the next theorem.10

10For example, a constant rule is regret-free truth-telling and anonymous but not efficient.
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In this case, we need to enlarge the class of A-maxmin rules by dropping the require-
ment of transitivity for the tie-breaking associated to the rules and to add the successive
elimination rules into the picture, as we did with dictatorial rules in Theorem 8.

Definition 8. A rule f : P2 → X is an A-maxmin⋆ rule if there is an antisymmetric and
complete (not necessarily transitive) binary relation ≻⋆ on X such that, for each P ∈ P2,

f (P) = max
≻⋆

M(P).

Observe that, since n = 2, |M(P)| ≤ 2 and therefore max
≻⋆

M(P) is well defined.

In a similar way to Definition 8 we can define the A-scoring⋆ rule associated to ≻⋆ .
Notice that the A-maxmin⋆ rule associated to ≻⋆ coincides with the A-scoring⋆ rule with
s = (s1, s2, s3) = (1, 3, 4) associated to ≻⋆.

Theorem 9. Assume n = 2 and m = 3. Then, a rule is regret-free truth-telling, efficient, and
anonymous if and only if it is a successive elimination rule or an A-maxmin⋆ rule.

Proof. See Appendix A.10.

Concerning the independence of axioms in the characterizations, it is clear that neu-
trality and regret-free truth-telling in Theorem 8 are independent. Successive elimination
rules are regret-free truth-telling but not neutral, and the rule that always chooses the
bottom of agent 1 is neutral and not regret-free truth-telling. On the other hand, in The-
orem 9, a constant rule is regret-free truth-telling, anonymous, and not efficient and a
dictatorship is regret-free truth-telling, efficient, and not anonymous. Now, given order
a ≻ b ≻ c, consider the rule f (P) = max≻{t(P1), t(P2)}. This rule is anonymous, efficient,
and not regret-free truth-telling.

m = 2 regret-free ⇐⇒ ext. majority voting Cor. 1
n = 2, m = 3 regret-free + neutral ⇐⇒ N-maxmin or dictatorship Th. 8
n = 2, m = 3 regret-free + eff. + anon. ⇐⇒ A-maxmin⋆ or succ. elim. Th. 9

We use “regret-free" to mean “regret-free truth-telling" due to space considerations.

Table 1: Characterization results with m = 2 or n = 2 and m = 3.

6 Summary

Table 1 summarizes the characterization results when there are only two alternatives, or
two agents and three alternatives. Table 2 summarizes our main findings about tops-only,
maxmin, scoring, and Condorcet consistent rules.
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Tops-only strategy-proof ⇐⇒ regret-free Pr. 1
A-maxmin n ≥ m − 1 or n divides m − 1 ⇐⇒ regret-free Th. 1
N-maxmin all regret-free Th. 1

k⋆ = 1 n ≥ m − 1 ⇐⇒ regret-free Th. 2
A-scoring†

1 < k⋆ < m − 1
k⋆n < m k⋆n = m − 1 ⇐⇒ regret-free Th. 4

(n > 2) k⋆n ≥ m sk⋆−1 = sk⋆ =⇒ none regret-free Th. 5
k⋆ = m − 1 none regret-free Th. 3

k⋆ = 1 all regret-free Th. 2
N-scoring†

1 < k⋆ < m − 1
k⋆n < m all regret-free Th. 4

(n > 2) k⋆n ≥ m sk⋆−1 = sk⋆ =⇒ none regret-free Th. 5
k⋆ = m − 1 none regret-free Th. 3

Condorcet Monotone n ̸= 4 or m > 3 =⇒ none regret-free Th. 6
consistent Succesive

none regret-free Th. 7
(n > 2) elimination

† Remember that k⋆ is such that s1 ≤ s2 ≤ sk⋆ < sk⋆+1 = . . . = sm. The results for k⋆ = 1 also apply
when n = 2.
We use “regret-free" to mean “regret-free truth-telling" due to space considerations.

Table 2: Summary of results for tops-only, maxmin, scoring, and Condorcet consistent rules.
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A Appendix

A.1 Proof of Theorem 1

We first show the equivalence in part (i). Let f : Pn → X be a A-maxmin rule.
(=⇒) Assume that n < m − 1 and that n does not divide m − 1. Then, there are h ≥ 1
and 1 ≤ s < n such that m − 1 = nh + s, or m = nh + r with h ≥ 1 and 2 ≤ r ≤ n. As
m − nh = r, for any profile of preferences there are at least r alternatives whose minimal
position is at least h + 1. So, the minimal position of a maxmin winner is always at least
h + 1, and in the case that it is exactly h + 1, there are at least r maxmin winners. Let
P ∈ Pn be given by the following table:

P1 P2 P3 . . . Pr Pr+1 . . . Pn
b a b . . . b b . . . b
...

...
... . . .

...
... . . .

...

a b
... . . .

...
... . . .

...

last h
positions

{
z

...
... . . .

...
... . . .

...
...

...
... . . .

...
... . . .

...
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where each alternative appears exactly one time below the dashed line (this can be done
because m = nh + r).

Then, a, b ∈ M(P) and f (P) = a. Now, consider preference P′
1 ∈ P that differs from

P1 only in that the positions of a and z are interchanged. We have that a /∈ M(P′
1, P−1),

b ∈ M(P′
1, P−1) , and f (P′

1, P−1) = b. Therefore,

f (P′
1, P−1)P1 f (P1, P−1). (6)

Let P⋆
−1 ∈ Pn−1 be such that f (P1, P⋆

−1) = f (P) = a. As we noted in the first paragraph
of this proof, it follows that mp( f (P′

1, P⋆
−1), (P′

1, P⋆
−1)) ≥ h + 1. There are two cases to

consider:

1. mp( f (P′
1, P⋆

−1), (P′
1, P⋆

−1)) > h + 1. Then, f (P′
1, P⋆

−1)P′
1z and, by the definition of

P′
1,

f (P′
1, P⋆

−1)P1 f (P1, P⋆
−1). (7)

By (6) and (7), f is not regret-free truth-telling.

2. mp( f (P′
1, P⋆

−1), (P′
1, P⋆

−1)) = h + 1. As we noted in the first paragraph of this proof,∣∣M(P′
1, P⋆

−1)
∣∣ ≥ r ≥ 2 and f (P′

1, P⋆
−1) ̸= z (because z is the last one in order ≻).

Again, f (P′
1, P⋆

−1)P′
1z and the proof follows as in the previous case.

(⇐=) Assume that there exist i ∈ N, (Pi, P−i) ∈ Pn and P′
i ∈ P such that

f (P′
i , P−i)Pi f (Pi, P−i). (8)

We will prove that there is P⋆
−i ∈ Pn−1 such that f (P) = f (Pi, P⋆

−i) and f (Pi, P⋆
−i)Pi f (P′

i , P⋆
−i).

Let P̂ = (P′
i , P−i). As f is an A-maxmin rule,

mp(P, f (P)) ≥ mp(P, f (P̂)) (9)

and
mp(P̂, f (P̂)) ≥ mp(P̂, f (P)). (10)

Let k be such that tk(Pi) = f (P). By (9) and since f (P̂)Pi f (P),

mp(P, f (P̂)) = k⋆ ≤ k ≤ m − 1, (11)

where tk⋆(P̂j) = f (P̂) for some j ∈ N \ {i}. Then, as P̂j = Pj and k⋆ ≤ k,

mp(P, f (P̂)) ≥ mp(P̂, f (P̂)). (12)

If mp(P, f (P)) = mp(P, f (P̂)) and mp(P̂, f (P̂)) = mp(P̂, f (P)), then

f (P), f (P̂) ∈ M(P̂) ∩M(P), (13)

contradicting that f (P) ̸= f (P̂). Therefore, by (9) and (10), mp(P̂, f (P̂)) > mp(P̂, f (P)) or
mp(P, f (P)) > mp(P, f (P̂)). By (12),

mp(P, f (P)) > mp(P̂, f (P)). (14)

21



Let k̂ be such that mp(P̂, f (P)) = k̂. Then, by (14), tk̂(P̂i) = f (P) and f (P)P̂jtk̂(P̂j) for all
j ∈ N \ {i}. If k ≤ k̂, then

mp(P̂, f (P)) = k̂ ≥ k ≥ mp(P, f (P)),

which contradicts (14). Therefore,
k̄ > k̂. (15)

This implies that there exists an alternative x ∈ X such that

f (P) = tk̄(Pi)Pix and xR′
itk̄(P′

i )P′
i f (P). (16)

There are two cases to consider:

1. n ≥ m − 1. Let P⋆
−i ∈ Pn−1 be such that t(P⋆

j ) = f (P), tm−1(P⋆
j ) = x for each j ∈

N \ {i}, and for each x ∈ X \ { f (P), x} choose an agent jx such that t1(P⋆
jx) = x (this

is feasible because n− 1 ≥ m− 2). Now, let P⋆ = (Pi, P⋆
−i). Then, mp((Pi, P⋆

−i), y) = 1
for all y ∈ X \ { f (P), x} and from definition of P⋆

−i, (16) and the fact that k ≤ m − 1,
we have mp((Pi, P⋆

−i), f (P)) = k̄ > mp((Pi, P⋆
−i), x). Therefore, f (Pi, P⋆

−i) = f (P).
Furthermore, mp((P′

i , P⋆
−i), y) = 1 for each y ∈ X \ { f (P), x} and from definition of

P⋆
−i, (16) and the fact that k ≤ m− 1, we have mp((P′

i , P⋆
−i), x) > mp((P′

i , P⋆
−i), f (P)).

Therefore, f (P′
i , P⋆

−i) = c.

We conclude that f (P) = f (Pi, P⋆
−i) and, by (16) and the fact that f (P′

i , P⋆
−i) = x,

f (Pi, P⋆
−i)Pi f (P′

i , P⋆
−i). Hence, f is regret-free truth-telling.

2. n divides m − 1. Thus, m − 1 = hn with h ≥ 1. Therefore,

mp(P, f (P)) ≥ h + 1. (17)

Let Y = {y ∈ X : yPi f (P)}. Then,

|Y| < m − mp(P, f (P)) ≤ m − (h + 1) = hn + 1 − h − 1 = h(n − 1). (18)

Let P⋆
−i ∈ Pn−1 be such that t(P⋆

j ) = f (P), tm−1(P⋆
j ) = x for each j ∈ N \ {i},

and for each y ∈ Y choose an agent j and a position u ≤ h such that tu(P⋆
j ) = y

(the construction of P⋆
−i is feasible by (18) and the fact that m − 2 = hn − 1 ≥

h(n − 1)). Now, let P⋆ = (Pi, P⋆
−i). Then, mp((Pi, P⋆

−i), y) ≤ h for each y ∈ Y,
mp((Pi, P⋆

−i), f (P)) ≥ mp(P, f (P)) ≥ h + 1 (this holds by (17) and the definition
of P⋆

−i), and mp((Pi, P⋆
−i), f (P)) = k̄ > mp((Pi, P⋆

−i), y) for each y ∈ X \ Y (this fol-
lows from the definitions of P⋆

−i and Y). Hence, f (Pi, P⋆
−i) = f (P). Furthermore,

mp((P′
i , P⋆

−i), y) ≤ h for each y ∈ Y and mp((P′
i , P⋆

−i), x) > mp((P′
i , P⋆

−i), f (P)) (this
follows from (11), (16), and the definition of P⋆

−i). Therefore, f (P′
i , P⋆

−i) ∈ X \ Y and
f (P′

i , P⋆
−i) ̸= f (P).

We conclude that f (P) = f (Pi, P⋆
−i) and f (Pi, P⋆

−i)Pi f (P′
i , P⋆

−i). Hence, f is regret-free
truth-telling.
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Next, we show part (ii). Assume that f : Pn → X is a N-maxmin rule. Then, there
exists j ∈ N such that

f (P̃) = max
P̃j

M(P̃) for each P̃ ∈ Pn. (19)

Let P, P′
i , P̂, k, and k̂ be as in (⇐=) of part (i). It is easy to see that equations (8), (9), (10),

(11) and (12) also hold here.
If mp(P, f (P)) = mp(P, f (P̂)) and mp(P̂, f (P̂)) = mp(P̂, f (P)), then (13) holds as in

the proof of part (i). As f (P′
i , P−i)Pi f (Pi, P−i), we have j ̸= i. But then (13) contradicts

f (P) ̸= f (P̂) since Pj = P̂j. Therefore, by (9) and (10), mp(P̂, f (P̂)) > mp(P̂, f (P)) or

mp(P, f (P)) > mp(P, f (P̂)). Now, it is easy to see that equations (14), (15) and (16) hold
in this proof as well, so there exists x ∈ X such that f (P) = tk̄(Pi)Pix and xR′

itk̄(P′
i )P′

i f (P).
Now, we define profile P⋆

−i ∈ Pn−1 where, for each j ∈ N \ {i}, P⋆
j is differs from

Pj in that f (P) is now in the top of P⋆
j and x is in the second place, while all the other

alternatives keep their relative ranking. Formally, let P⋆
−i ∈ Pn−1 be such that, for each

j ∈ N \ {i}, t(P⋆
j ) = f (P), tm−1(P⋆

j ) = x, and if k′ and k′′ are such that tk′(Pj) = f (P) and
tk′′(Pj) = x, if we let k1 = max{k′, k′′} and k2 = min{k′, k′′}, define

tk(P⋆
j ) =


tk+2(Pj) if m − 2 ≥ k ≥ k1 − 1,

tk+1(Pj) if k̄ − 1 > k ≥ k2.

Next, we present two claims.
Claim 1: f (Pi, P⋆

−i) = f (P). Let P⋆ = (Pi, P⋆
−i). Since f (P)Pix and by definition of P⋆

−i,

mp(P⋆, f (P)) > mp(P⋆, x) (20)

Then, f (P⋆) ̸= x. As f (P′
i , P−i)Pi f (P) = tk(Pi),

mp(P⋆, f (P)) = k. (21)

Now, let b ∈ X \ { f (P), x}. By definition of P⋆ and the fact that f is a N-maxmin rule,

mp(P⋆, b) ≤ mp(P, b) ≤ mp(P, f (P)) ≤ k. (22)

Therefore, f (P) ∈ M(P⋆) and mp(P⋆, f (P)) = k. On the one hand, if j ̸= i, then t(P⋆
j
) =

f (P) and, by definition of f , f (P) = f (P⋆). On the other hand, if j = i and there is
b ∈ M(P⋆) \ { f (P)}, then by (42) and (22), mp(P, b) = mp(P, f (P)) = k. Thus, by (19)
and the fact that j = i, f (P)Pib. Therefore, as P⋆

i = Pi, f (P) = f (P⋆). This proves the
Claim.

Claim 2: f (Pi, P⋆
−i)Pi f (P′

i , P⋆
−i). If f (P′

i , P⋆
−i) = x, then by Claim 1 and (16) the proof

is trivial. Now assume f (P′
i , P⋆

−i) ̸= x. First, we will prove that f (P′
i , P⋆

−i) ̸= f (P). As
f (P) = tk̂(P′

i ),
k̂ = mp((P′

i , P⋆
−i), f (P)).
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Furthermore, as xR′
itk(P′

i ) and k̄ ≤ m − 1, by definition of P⋆
−i,

mp((P′
i , P⋆

−i), x) ≥ k̄. (23)

Then, by (15),
mp((P′

i , P⋆
−i), x) > k̂ = mp((P′

i , P⋆
−i), f (P)),

implying that f (P′
i , P⋆

−i) ̸= f (P).
Now, let b ∈ X \ { f (P), x} be such that bPi f (Pi, P⋆

−i). Since f (Pi, P⋆
−i) = f (P) = tk̄(Pi),

by definition of f there exists j ∈ N \ {i} such that tk̄(Pj)Rjb. By definition of P⋆
−i,

tk̄(P⋆
j )R⋆

j b. Therefore,

mp((P′
i , P⋆

−i), b) ≤ k. (24)

On the one hand, if j ̸= i, since tm−1(P⋆
j
) = x the definition of f , (23), and (24) imply that

f (P′
i , P⋆

−i) ̸= b. On the other hand, if j = i, since bPi f (Pi, P⋆
−i) the definition of f implies

mp((Pi, P⋆
−i), b) < mp((Pi, P⋆

−i), f ((Pi, P⋆
−i))). Then,

mp((Pi, P⋆
−i), b) < k.

Therefore, as bPi f (Pi, P⋆
−i) = tk̄(Pi),

mp((P′
i , P⋆

−i), b) < k

Then, by the definition of f and (23), f (P′
i , P⋆

−i) ̸= b in this case as well. Therefore, we
conclude that

f (Pi, P⋆
−i)Pi f (P′

i , P⋆
−i),

proving the Claim.
By Claims 1 and 2 we conclude that f is regret-free truth-telling. □

A.2 Proof of Theorem 2

We first show the equivalence in part (i). Let f : Pn → X be an A-scoring rule with k⋆ = 1.
(=⇒) Suppose that n < m − 1 (this implies m > 3). Assume that a, b are the first two
alternatives in the tie-breaking with a ≻ b and let z the last alternative in the tie-breaking.
Let P ∈ Pn be such that t3(Pi) = b, t2(Pi) = a, t1(Pi) = z, and tm(Pj) = b, tm−1(Pj) = a,
and tm−2(Pj) = z for each j ∈ N \ {i}. Then, f (P) = a. Now, let P′

i ∈ P be such that
t1(P′

i ) = a. Then, f (P′
i , P−i) = b and, therefore,

f (P′
i , P−i)Pi f (P). (25)

Now, let P⋆
−i ∈ Pn−1 be such that f (P) = f (Pi, P⋆

−i). As n + 1 < m,
∣∣S(P′

i , P⋆
−i)

∣∣ ≥ 2.
Therefore, as z is the last alternative in the order ≻, f (P′

i , P⋆
−i) ̸= z and

f (P′
i , P⋆

−i)Ri f (Pi, P⋆
−i). (26)

Hence, by (25) and (26), f is not regret-free truth-telling.
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(⇐=) Assume n ≥ m − 1 and there exist i ∈ N, P ∈ Pn and P′
i ∈ P such that

f (P′
i , P−i)Pi f (P). (27)

Next, we show there is P⋆
−i ∈ Pn−1 such that f (P) = f (Pi, P⋆

−i) and f (Pi, P⋆
−i)Pi f (P′

i , P⋆
−i).

Let P̂ = (P′
i , P−i). If t1(Pi) = t1(P′

i ), then S(P) = S(P̂), contradicting the definition of f
and the fact that f (P̂) ̸= f (Pi, P−i). Therefore,

t1(Pi) ̸= t1(P′
i ). (28)

If t1(Pi) = f (P), then as t1(Pi) ̸= t1(P′
i ), s(P̂, f (P)) > s(P, f (P)). By definition of f ,

s(P, f (P)) ≥ s(P, x) for each x ∈ X. Then, s(P̂, f (P)) > s(P, x) for each x ∈ X \ { f (P)}.
Now, as P̂ = (P′

i , P−i), s(P̂, f (P)) > s(P̂, x) for each x ∈ X \ {t1(Pi)}. Therefore, as
t1(Pi) = f (P), f (P̂) = f (P) which contradicts (27). Thus,

t1(Pi) ̸= f (P). (29)

Furthermore,

s(P̂, x) = s(P, x) for each x /∈ {t1(Pi), t1(P′
i )},

s(P̂, t1(Pi)) = s(P, t1(Pi)) + 1, and

s(P̂, t1(P′
i )) = s(P, t1(P′

i ))− 1.

Then, as s(P, x) ≤ s(P, f (P)) for each x ∈ X,

S(P̂) = {t1(Pi)} or S(P) \ {t1(P′
i )} ⊂ S(P̂) ⊂ S(P) ∪ {t1(Pi)}.

Thus, by (27),
S(P) \ {t1(P′

i )} ⊂ S(P̂) ⊂ S(P) ∪ {t1(Pi)}. (30)

Next, we claim that
t1(P′

i ) = f (P) (31)

holds. Assume otherwise that t1(P′
i ) ̸= f (P). Then, by (30) and the definition of f , f (P̂) =

f (P) or f (P̂) = t1(Pi), which contradicts that f (P̂)Pi f (P). Then, (31) holds.
Now, let P⋆

−i be such that {t1(P⋆
j ) : j ̸= i} = X \ { f (P), t1(Pi)} (P⋆

−i exists because
n ≥ m − 1). As t1(Pi) ̸= f (P), S(Pi, P⋆

−i) = { f (P)} and, therefore,

f (P) = f (Pi, P⋆
−i)

By (31), t1(P′
i ) = f (P). Then, S(P′

i , P⋆
−i) = {t1(Pi)} implying f (P′

i , P⋆
−i) = t1(Pi) and,

therefore,
f (Pi, P⋆

−i)Pi f (P′
i , P⋆

−i). (32)

By (27) and (32), f is regret-free truth-telling.

In order to see (ii), Assume that f is a N-scoring rule with k⋆ = 1. Then, there exists j
such that

f (P̃) = max
P̃j

S(P̃) for each P̃ ∈ Pn. (33)
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Let P, P′
i , P̂, be as in (⇐=) of part (i). By definition, (27) also holds here.

If t1(Pi) = t1(P′
i ), then S(P) = S(P̂). As f (P′

i , P−i)Pi f (Pi, P−i), we have j ∈ N \ {i}.
Now, S(P) = S(P̂) contradicts f (P) ̸= f (P̂) since Pj = P̂j. Therefore, (28) holds here

and it follows that both (29) and (30) hold as well. If j = i, we get a contradiction with
f (P̂)Pi f (P) and S(P̂) ⊂ S(P) ∪ {t1(Pi)}, so j ̸= i.

Now, let P⋆
−i ∈ Pn−1 be such that t(P⋆

j
) = t1(Pi), tm−1(P⋆

j
) = f (P) and, for each

j ∈ N \ {i, j}, t(P⋆
j ) = f (P) and t2(P⋆

j ) = t1(Pi). Therefore, by (29), f (P) ∈ S(Pi, P⋆
−i) and

t1(Pi) /∈ S(Pi, P⋆
−i). By definition of f and P⋆

j
it follows that

f (P) = f (Pi, P⋆
−i).

Then, by (28), t1(Pi) ∈ S(P′
i , P⋆

−i). By definition of f and P⋆
j

we have

f (P′
i , P⋆

−i) = t1(Pi)

Therefore,
f (Pi, P⋆

−i)Pi f (P′
i , P⋆

−i). (34)

By (27) and (34), f is regret-free truth-telling. □

A.3 Proof of Theorem 3

Let f : Pn → X be a scoring rule with k⋆ = m − 1 (this implies that sm−1 < sm). Let
a, b, c ∈ X and assume w.l.o.g. that if f is an A-scoring then the tie-breaking is given by
order ≻ with a ≻ b ≻ c ≻ . . ., whereas if f is a N-scoring rule agent 1 break ties. There
are two cases to consider:

1. n = 2t + 3 with t ≥ 0. Let P ∈ Pn be given by the following table:

P1 P2 P3 P4 · · · Pt+3 Pt+4 · · · P2t+3
a c b a · · · a b · · · b
c b a b · · · b a · · · a
b a c c · · · c c · · · c
...

...
...

... · · · ...
... · · · ...︸ ︷︷ ︸ ︸ ︷︷ ︸

t agents t agents

As s(P, a) = s(P, b) ≥ s(P, x) for each x ∈ X \ {a, b}, by the tie-breaking it follows
that f (P) = a. Let P′

2 ∈ P be such that P′
2 : b, c, a, . . ., and let P̂ = (P′

2, P−2). As
k⋆ = m − 1, we have that

s(P̂, b) > s(P, b) = s(P, a) = s(P̂, a)

and
s(P̂, b) > s(P, b) ≥ s(P, c) > s(P̂, c).
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Therefore,
f (P̂) = bP2a = f (P). (35)

Next, consider P⋆
−2 ∈ Pn−1 such that f (P2, P⋆

−2) = a. Then, f (P′
2, P⋆

−2) ∈ {a, b} be-
cause s((P2, P⋆

−2), b) < s((P′
2, P⋆

−2), b), s((P2, P⋆
−2), c) > s((P′

2, P⋆
−2), c), and s((P2, P⋆

−2), x) =
s((P′

2, P⋆
−2), x) for each x ∈ X \ {b, c}. Therefore,

f (P′
2, P⋆

−2)R2 f (P2, P⋆
−2) (36)

By (35) and (36), f is not regret-free truth-telling.

2. n = 2t with t ≥ 2. Let P ∈ Pn be given by the following table:

P1 P2 P3 P4 · · · Pt+1 Pt+2 · · · P2t
a c c a · · · a b · · · b
b b a b · · · b a · · · a
c a b c · · · c c · · · c
...

...
...

... · · · ...
... · · · ...︸ ︷︷ ︸ ︸ ︷︷ ︸

t − 2 agents t − 1 agents

Then, f (P) ∈ {a, b, c}. Furthermore, as s(P, a) = s(P, b), a ≻ b and aP1b, f (P) ∈
{a, c}. If f (P) = a, then, s(P, a) = s(P, b) ≥ s(P, c) and we proceed as in Case 1. If
f (P) = c, then s(P, c) ≥ s(P, a) = s(P, b). Consider agent j such that t + 2 ≤ j ≤ 2t
(i.e., Pj : b, a, c, . . .) and let P′

j ∈ P be such that P′
j : a, b, c, . . . and P̂ = (P′

j , P−j). As

k⋆ = m − 1, s(P̂, a) ≥ s(P̂, c) and s(P̂, a) > s(P̂, b). Since a ≻ c and aP1c,

f (P̂) = aPjc = f (P). (37)

Next, consider P⋆
−j ∈ Pn−1 such that f (Pj, P⋆

−j) = c. Then, f (P′
j , P⋆

−j) ∈ {c, a}, be-
cause s((Pj, P⋆

−j), a) < s((P′
j , P⋆

−j), a), (s(Pj, P⋆
−j), b) > s((P′

j , P⋆
−j), b), and s((Pj, P⋆

−j), x) =
s((P′

j , P⋆
−j), x) for each x ∈ X \ {b, a}. Therefore,

f (P′
j , P⋆

−j)Rj f (Pj, P⋆
−j) (38)

By (37) and (38), f is not regret-free truth-telling.

□

A.4 Proof of Theorem 4

Assume n > 2 and let f : Pn → X be a scoring rule such that k⋆n < m. We first show the
equivalence in part (i). Let further assume that f is an A-scoring rule.
(=⇒) Assume that k⋆n < m − 1, we will prove that f is not regret-free truth-telling.
Assume that a and b are the first two alternatives in the tie-breaking ≻ with a ≻ b and
let z the last alternative in the tie-breaking. First, notice that for any profile of preferences
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there are at least two alternatives above position k⋆ in the preference of each agent. So,
there are at least two score winners (with score equal to nsm).

Let P ∈ Pn be such that t(Pi) = b, tk⋆+1(Pi) = a, tk⋆(Pi) = z and, for each j ∈ N \ {i},
Pj : b, a, . . . . Then, f (P) = a. Now, consider preference P′

1 ∈ P that differs from P1 only in
that the positions of a and z are interchanged. Therefore, f (P′

i , P−i) = b and

f (P′
i , P−i)Pi f (P). (39)

Now, let P⋆
−i ∈ Pn−1 be such that f (Pi, P⋆

−i) = f (P). As we noted in the first paragraph of
this proof, s( f (P′

i , P⋆
−i), (P′

i , P⋆
−i)) = nsm and f (P′

i , P⋆
−i) ̸= z (because z is the last alterna-

tive in the tie-breaking). Then, f (P′
i , P⋆

−i)P′
i z and, by the definition of P′

i ,

f (P′
i , P⋆

−i)Ri f (Pi, P⋆
−i). (40)

By (39) and (40), f is not regret-free truth-telling.
(⇐=) Assume that k⋆n = m − 1. Then, for any profile there is always an alternative with
maximal score n · sm. Thus, given P ∈ Pn, s( f (P), P) = n · sm and f (P)Pjtk⋆(Pj) for each
j ∈ N.

Let P′
i ∈ P be such that

f (P′
i , P−i)Pi f (P). (41)

Then, f (P′
i , P−i)Pi f (P)Pitk⋆(Pi). By definition of k⋆,

s( f (P′
i , P−i), P) ≥ s( f (P′

i , P−i), (P′
i , P−i)) (42)

Also,
tk⋆(P′

i )R′
i f (P). (43)

Otherwise, f (P)P′
i tk⋆(P′

i ) implies s( f (P), P) = s( f (P), (P′
i , P−i)). By (42), s( f (P′

i , P−i, P)) =
s( f (P), P) and s( f (P), (P′

i , P−i)) = s( f (P′
i , P−i), (P′

i , P−i)), contradicting the definition of
f since f (P′

i , P−i) ̸= f (P). So (43) holds.
Therefore, there exists x ∈ X such that tk⋆(Pi)Rix and xP′

i tk⋆(P′
i ). As k⋆n = m − 1 is

equivalent to (n − 1)k⋆ = m − k⋆ − 1, we can consider P⋆
−i ∈ Pn−1 such that the two

following requirements hold: (i) P⋆
j : x, f (P), . . . for each j ∈ N \ {i}, and (ii) for each

y ∈ X \ { f (P)} such that yPitk⋆(Pi) there exist j ∈ N \ {i} such that tk⋆(P⋆
j )R⋆

j y. Therefore,
since now f (P) is the only alternative with score n · sm, S(Pi, P⋆

−i) = { f (P)} and

f (Pi, P⋆
−i) = f (P).

As s(x, (P′
i , P⋆

−i)) = n · sm and, by (43) and the definition of P⋆
−i, s(r, (P′

i , P⋆
−i)) < n · sm for

each r such that rPitk⋆(Pi), it follows that tk⋆(Pi)Ri f (P′
i , P⋆

−i) and we have

f (Pi, P⋆
−i)Pi f (P′

i , P⋆
−i). (44)

By (41) and (44), f is regret-free truth-telling.

To see part (ii), let f : Pn → X be a N-scoring rule. Then, there exists j ∈ N such that

f (P̃) = max
P̃j

S(P̃) for each P̃ ∈ Pn.
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Let P ∈ Pn. As we noted in the first paragraph of this proof, s( f (P), P) = n · smand
f (P)Pjtk⋆(Pj) for each j ∈ N.

Let P′
i ∈ P be such that

f (P′
i , P−i)Pi f (P). (45)

Since, by the definition of k⋆, s( f (P′
i , P−i), P) = s( f (P), P) = n · sm, it follows that i ∈

N \ {j}.
Notice that, by the same arguments, (42) and (43) also hold here. Therefore, tk⋆(Pi)P′

i f (P)
and there exists x ∈ X such that tk⋆(Pi)Pix and xP

′
i tk⋆(Pi).

Now, let P⋆
−i ∈ Pn−1 be such that P⋆

j : x, f (P), . . . for each j ∈ N \ {i}. As s( f (P), (Pi, P⋆
−i)) =

n · sm > s(x, (Pi, P⋆
−i)) and j ̸= i, f (Pi, P⋆

−i) = f (P).As s(x, (P′
i , P⋆

−i)) = n · sm and
j ̸= i, f (P′

i , P⋆
−i) = x. Then,

f (Pi, P⋆
−i)Pi f (P′

i , P⋆
−i). (46)

By (45) and (46), f is regret-free truth-telling. □

A.5 Proof of Theorem 5

Assume n > 2 and let f : Pn → X be a scoring rule such that k⋆n ≥ m and sk⋆−1 = sk⋆

(this implies k⋆ > 1). If k⋆ = m − 1, the result follows from Theorem 3, so assume that
k⋆ < m − 1. If f is and A-scoring rule, assume that a and b are the first two alternatives
in the tie-breaking ≻ with a ≻ b, whereas if f is a N-scoring rule, let agent 1 be the one
who break ties. By the definition of k⋆, sk⋆−1 = sk⋆ < sk⋆+1 = sm−1 = sm. Let a, b ∈ X. As
k⋆n ≥ m and k⋆ > 1, k⋆(n − 1) ≥ m − k⋆. Then, there exists P ∈ Pn such that:

(i) b = tk⋆(P2) and a = tk⋆−1(P2),

(ii) for each j ∈ N \ {2}, t(Pj) = a and tm−1(Pj) = b,

(iii) for each x ∈ X such that xP2b, there exist j ∈ N \ {2} such that tk⋆(Pj)Rjx.

Since s(a, P) ≥ s(x, P) for each x ∈ X such that xR2b, a ≻ x and aP1b, it follows that
bP2 f (P). Let P′

2 ∈ P be such that tk⋆+1(P′
2) = b = tk⋆(P2), tk⋆(P′

2) = tk⋆+1(P2), and
tk(P′

2) = tk(P2) for each k ̸= k⋆, k⋆ + 1. Let P̂ = (P′
2, P−2). Then, by the definition of k⋆,

s(b, P̂) > s(b, P) = s(a, P) = s(a, P̂)

and s(b, P̂) ≥ s(x, P̂) if bP2x. Therefore,

f (P′
2, P−2)P2 f (P). (47)

Let P⋆
−2 ∈ Pn−1 be such that f (P2, P⋆

−2) = f (P). Since s( f (P), (P2, P⋆
−2)) = s( f (P), (P′

2, P⋆
−2))

and s(x, (P2, P⋆
−2)) ≥ s(x, (P′

2, P⋆
−2)) for each x ∈ X \ {b}, it follows that f (P′

2, P⋆
−2) ∈

{ f (P), b}. Therefore,
f (P′

2, P⋆
−2)R2 f (P2, P⋆

−2). (48)

By (47) and (48), f is not regret-free truth-telling. □
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A.6 Proof of Theorem 6

Let f : Pn → X be a Condorcet consistent and monotone rule. There are two cases to
consider:

1. n ̸= 2, 4. Then, there are t ≥ 1 and s ≥ 0 such that n = 3t + 2s. Let P ∈ Pn be given
by the following table:

P1 · · · Pt Pt+1 · · · P2t+s P2t+s+1 · · · P3t+2s
a · · · a b · · · b c · · · c
b · · · b c · · · c a · · · a
c · · · c a · · · a b · · · b
... · · · ...

... · · · ...
... · · · ...︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

t agents t + s agents t + s agents

Since CP(a, c) = t < 3t+2s
2 , CP(c, b) = t + s < 3t+2s

2 , and CP(b, a) = t + s < 3t+2s
2 , it

follows that there is no Condorcet winner according to P.

Let x = f (P). Then, there exists i⋆ ∈ N such that x = tk(Pi⋆) with k ≤ m − 2.
Assume first that i⋆ is such that t + 1 ≤ i⋆ ≤ 2t + s. Let N′ = {j ∈ N : t + 1 ≤ j ≤
2t+ s} and consider the subprofile P′

N′ ∈ P t+s where, for each j ∈ N′, P′
j ∈ P is such

that t(P′
j ) = c, tm−1(P′

j ) = b, tm−2(P′
j ) = a, and tk(P′

j ) = tk(Pj) for each k ≤ m − 3.
Then, c is the Condorcet winner in (P′

N′ , P−N′). As i⋆ ∈ N′, x ̸= c. This implies the
existence of S ⊂ N′ and j⋆ ∈ N′ \ S such that

f (P′
S, P−S) = x (49)

and
f (P′

S∪{j⋆}, P−S∪{j⋆}) ̸= x. (50)

Now, by monotonicity and (50), f (P′
S∪{j⋆}, P−S∪{j⋆})Pj⋆x, implying

f (P′
S∪{j⋆}, P−S∪{j⋆})Pj⋆ f (P′

S, P−S). (51)

Now let, P⋆
−j⋆ ∈ Pn−1 be such that f (Pj⋆ , P⋆

−j⋆) = f (P′
S, P−S). By (49), f (Pj⋆ , P⋆

−j⋆) =

x. Then, by monotonicity, f (P′
j⋆ , P⋆

−j⋆)Rj⋆x. Hence

f (P′
j⋆ , P⋆

−j⋆)Rj⋆ f (Pj⋆ , P⋆
−j⋆). (52)

By (51) and (52), f is not regret-free truth-telling. The cases where i⋆ is such that
1 ≤ i⋆ ≤ t or 2t + s + 1 ≤ i⋆ ≤ 3t + 2s are similar and therefore we omit them.

2. n = 4 and m > 3. Let P ∈ Pn be given by the following table:

30



P1 P2 P3 P4
a b c d
b c d a
c d a b
d a b c
...

...
...

...

As CP(a, c) = CP(a, b) = CP(b, d) = 2, there is no Condorcet winner according to
P. Let f (P) = x. Assume that f (P) /∈ {b, c, d} (the other 3 cases in which f (P) /∈
{w, u, h} with {w, u, h} ⊂ {a, b, c, d} follow a similar argument). Next, let P′

2 ∈ P be
such that t(P′

2) = d, tm−1(P′
2) = b, tm−2(P′

2) = c, tm−3(P′
2) = a, and tk(P′

2) = tk(P2)
for each k ≤ m − 4. Similarly, let P′

3 ∈ P be such that t(P′
3) = d, tm−1(P′

3) = c,
tm−2(P′

3) = a, tm−3(P′
3) = b, and tk(P′

3) = tk(P3) for each k ≤ m − 4. Then, d is the
Condorcet winner according to (P′

{2,3}, P−{2,3}). There are two cases to consider:

2.1. f (P′
2, P−2) ̸= x. Then, by monotonicity, f (P′

2, P−2)P2x. Hence,

f (P′
2, P−2)P2 f (P). (53)

Now, let P⋆
−2 ∈ Pn−1 be such that f (P2, P⋆

−2) = f (P). Then, by monotonicity,

f (P′
2, P⋆

−2)R2 f (P2, P⋆
−2). (54)

By (53) and (54), f is not regret-free truth-telling.

2.2. f (P′
2, P−2) = x. Then, f (P′

{2,3}, P−{2,3}) = dP3x = f (P′
2, P−2) and an analogous rea-

soning to the one presented in Case 2.1 for agent 2, now performed with agent 3,
shows that f is not regret-free truth-telling.

□

A.7 Proof of Corollary 5

We first show that each of the rules is monotone.

Lemma 1. Simpson, Copeland, Young, Dodgson, Fishburn and Black rules (both anonymous and
neutral) satisfy monotonicity.

Proof. Let x ∈ X, P ∈ Pn and P′
i ∈ P be such that P′

i is a monotonic transforma-
tion of Pi with respect to x. Let z ∈ X be such that xPiz and let y ∈ {x, z}. Then,
CP(y, a) = C(P′

i ,P−i)
(y, a) for each a ∈ X. Therefore, (both anonymous and neutral) Simp-

son, Copeland and Fishburn rules are monotonic. To see that Young and Dodgson rules
are monotonic, simply note that yPia if and only if yP′

i a for each a ∈ X \ {y}. Finally, to
see that Black rule is monotonic, note that (i) y is a Cordorcet winner in P if and only if y
is a Condorcet winner in (P′

i , P−i), and (ii) the Borda score for y is the same in profiles P
and (P′

i , P−i).
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Proof of Corollary 5. Assume first that N = {1, 2, 3, 4} and X = {a, b, c}. In all of the cases
that we consider in what follows, w.l.o.g., we assume that the tie-breaking is given by
a ≻ b ≻ c in the anonymous case, or by agent 1 in the neutral case.

Let f : P4 → {a, b, c} be a Simpson (Young, Dodgson, Fishburn) rule. Le P ∈ P4 be
given by the following table:

P1 P2 P3 P4
b c c a
a b b c
c a a b

Then, c is the only Simpson (Young, Dodgson, Fishburn) winner at P and f (P) = c. Now,
consider P′

1 ∈ P such that P′
1 : a, b, c. Then, a is a Simpson (Young, Dodgson, Fishburn)

winner at (P′
1, P−1). Therefore, f (P′

1, P−1) = aP1c = f (P). Let P⋆
−1 ∈ Pn−1 be such that

f (P1, P⋆
−1) = f (P). Since f (P) = c = t1(P1), f (P′

1, P⋆
−1)R1 f (P1, P⋆

−1). Hence, f is not
regret-free truth-telling.

Next, let f : P4 → {a, b, c} be a Copeland (Black) rule. Let P ∈ P4 be given by

P1 P2 P3 P4
b c c a
a a b c
c b a b

Then, c is the only Copeland (Black) winner at P and f (P) = c. Now, consider P′
1 ∈ P such

that P′
1 : a, b, c. Then, a is a Copeland (Black) winner at (P′

1, P−1) and a similar reasoning
to the one presented for Simpson’ rule shows that f is not regret-free truth-telling.

Finally, assume n /∈ {2, 4}, or n = 4 and m > 3. By Lemma 1, Simpson, Copeland,
Young, Dodgson, Fishburn and Black rules are monotonic. Since all of them are also
Condorcet consistent, the result follows from Theorem 6. □

A.8 Proof of Theorem 7

Let f : Pn → X be a succesive elimination rule with associated order a ≻ b ≻ c ≻ . . . and
let t ≥ 1 and 1 ≥ s ≥ 0 be such that n = 2t + s. Next, let P ∈ Pn be given by the following
table:11

P1 P2 P3 · · · Pt+2 Pt+3 · · · P2t+s
a c b · · · b a · · · a
b a c · · · c b · · · b
... b a · · · a c · · · c
...

...
... · · · ...

... · · · ...

c
...

... · · · ...
... · · · ...︸ ︷︷ ︸ ︸ ︷︷ ︸

t agents t + s − 2 agents

11Notice that, as n ≥ 3, t + s − 2 ≥ 0.
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Since CP(a, b) = t + s ≥ t = CP(b, a), CP(a, c) = t + s − 1 < t + 1 = CP(c, a), and
CP(c, x) = n − 1 > 1 = CP(x, c) for each x ∈ X \ {a, b}, it follows that f (P) = c. Let
P′

1 ∈ P be such that t(P′
1) = b, tm−1(P′

1) = a, and t1(P′
1) = c, and let P̂ = (P′

1, P−1).
Since CP̂(a, b) = t + s − 1 < t + 1 = CP̂(b, a), CP̂(b, c) = n − 1 > 1 = CP̂(c, b), and
CP̂(b, x) > CP̂(x, b) for each x ∈ X \ {a, c}, it follows that f (P′

1, P−1) = b. Therefore,

f (P′
1, P−1)P1 f (P). (55)

Furthermore, as f (P) = t1(P1),

f (P′
1, P⋆

−1)R1 f (P1, P⋆
−1) (56)

for each P⋆
−1 ∈ Pn−1 such that f (P1, P⋆

−1) = f (P). By (55) and (56), f is not regret-free
truth-telling. □

A.9 Proof of Theorem 8

(=⇒) Let f : P2 → {a, b, c} be a regret-free truth-telling and neutral rule.
Claim: f is efficient. Assume f is not efficient. W.l.o.g., there are two cases to consider:

1. P ∈ P2 is such that f (P) = c, Pi : a, b, c, and Pj is such that x = t(Pj) ̸= c. By regret-
free truth-telling, f (P′

i , Pj) = c for each P′
i ∈ P . Let π be the permutation of X

such that π(c) = x. By neutrality, f (πP) = x. Then, by regret-free truth-telling,
f (P′

i , πPj) = x for each P′
i ∈ P . This implies that, as f (πP) = xPjc = f (πPi, Pj) and

f (P′
i , πPj) = x for each P′

i ∈ P , agent j manipulates f and does not regret it.

2. P ∈ P2 is such that f (P) = b and Pi = Pj : a, b, c. Let π be the permutation of X
such that π(a) = b. By neutrality, f (πP) = a. By the previous case, f (πPi, Pj) ̸= c.
We claim that f (πPi, Pj) = b. Assume f (πPi, Pj) = a. Let P⋆

j be such that f (Pi, P⋆
j ) =

b. If f (πPi, P⋆
j ) = c, then agent i manipulates f at (πPi, P⋆

j ) via Pi and does not regret
it. Therefore, f (πPi, P⋆

j ) ̸= c. This implies that agent i manipulates f at P via πPi and
does not regret it. This proves the claim that f (πPi, Pj) = b. By a similar reasoning
to the one presented for agent i, we can see that agent j manipulates f at (πPi, Pj)
via πPj and does not regret it.

Since in both cases we reach a contradiction, f is efficient. This proves the claim.
Next, assume that f is not a dictatorship. We will prove that f is a N-maxmin rule.

Let P ∈ P2 be such that P1 : a, b, c and P2 : b, a, c. By efficiency, f (P) ∈ {a, b}. Assume,
w.l.o.g., that f (P) = a. We will prove that

f (P) = max
P1

M(P) for each P ∈ P2.

Let P ∈ P2. There are three cases to consider:

1. t(P1) = t(P2). By efficiency, f (P) = t(P1) = maxP1 M(P).
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2. t(P1) ̸= t(P2) and t1(P1) = t1(P2). As f (P) = a, by neutrality, f (P) = t(P1) =
maxP1 M(P).

3. t(P1) ̸= t(P2) and t1(P1) ̸= t1(P2). Then,

M(P) = X \ {t1(P1), t1(P2)}. (57)

If f (P) = t1(Pi) = x for some i ∈ {1, 2}, then f (P) = t(Pj) = x with j ̸= i (because
of efficiency). Then, by regret-free truth-telling,

f (Pj, P′
i ) = x for all P′

i .

Then, again by regret-free truth-telling,

f (P′
j , P′

i ) = x for all P′
i and all P′

j such that t(P′
j ) = x.

Then, j is a dictator when he has top in x. Therefore, by neutrality, j is a dictator
which is a contradiction. Thus,

f (P) ̸= t1(Pi) for all i ∈ {1, 2}. (58)

Therefore, by (57) and (58), M(P) = { f (P)} and f (P) = maxP1 M(P).

(⇐=) Let f be a N-maxmin rule. It is clear that f is neutral and, furthermore, by Theorem
1 (ii), f is regret-free truth-telling. If f is a dictatorship, it is trivial that it is neutral and
regret-free truth-telling. □

A.10 Proof of Theorem 9

(⇐=) Let f : P2 → {a, b, c} be a successive elimination rule or an A-maxmin⋆ rule. It is
clear that f satisfies efficiency and anonymity. We will prove that f is regret-free truth-
telling. Assume there are (P1, P2) ∈ P2 and P′

1 ∈ P such that

f (P′
1, P2)P1 f (P1, P2). (59)

We will prove that there exists P⋆
2 ∈ P such that f (P1, P⋆

2 ) = f (P) and

f (P1, P⋆
2 )P1 f (P′

1, P⋆
2 ). (60)

There are two cases to consider:

1. f is a successive elimination rule with associated order a ≻ b ≻ c. It is clear that

f (P̃)R̃ia for each P̃ ∈ P2 and each i ∈ {1, 2}. (61)

If f (P1, P2) = a, by (59) and efficiency, aP2 f (P′
1, P2), contradicting (61). Therefore,

f (P1, P2)P1a and, by (59), t1(P1) = a. There are two cases to consider:
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1.1. bP1cP1a. Then, by (59), f (P1, P2) = c and, by definition of f , cP2aP2b. Therefore,
there is no P′

1 ∈ P such that f (P′
1, P2) = b, contradicting (59).

1.2. cP1bP1a. Then, by (59), f (P1, P2) = b and, by definition of f , t(P2) = b. It
follows from (59) that f (P′

1, P2) = c, implying that cP2a and cP′
1aP′

1b. Now, let
P⋆

2 ∈ P be such that bP⋆
2 aP⋆

2 c. Then, f (P1, P⋆
2 ) = b and f (P′

1, P⋆
2 ) = a. Since

bP1a, (60) holds and f is regret-free truth-telling.

2. f is a A-maxmin⋆ rule with associated binary relation ≻⋆. By definition of f , it is
clear that

f (P̃) ̸= t1(P̃i) for each P̃ ∈ P2 and each i ∈ {1, 2}. (62)

W.l.o.g, let P1 : a, b, c. By (59), t(P2) ̸= a and f (P) ̸= a. Then, by (62), f (P) =
b ∈ {t(P2), t2(P2)}. By (59) and (62), f (P′

1, P2) = a ∈ {t(P2), t2(P2)}. Therefore, as
t(P2) ̸= a, P2 : b, a, c. Then, by definition of f , b ≻⋆ a. Therefore, as f (P′

1, P2) =
a, t1(P′

1) = b. Now let P⋆
2 : b, c, a. Then, by (62), f (P1, P2) = b = f (P1, P⋆

2 ) and
f (P′

1, P⋆
2 ) = c. Since bP1c, (60) holds and f is regret-free truth-telling.

(=⇒) Assume that f is regret-free truth-telling, efficient, and anonymous. We will prove
that f is a successive elimination rule or an A-maxmin⋆ rule. There are two cases to
consider:

1. there exist a ∈ X and P ∈ P2 such that f (P) = t1(Pi) = a for some i ∈ {1, 2}. By
efficiency, f (P) = t(Pj) = a for j = N \ {i}. It follows, by regret-free truth-telling,
that

f (Pi, Pj) = a for each Pi ∈ P .

Then, again by regret-free truth-telling,

f (P) = a for each P ∈ P2 such that t(Pj) = a.

Therefore, by anonymity,

f (P) = a for all P such that a ∈ {t(P1), t(P2)}.

This implies, by regret-free truth-telling, that

f (P)Ria for each P ∈ P2 and each i ∈ {1, 2}. (63)

Let P̂ ∈ P2 be such that P̂1 : b, c, a and P̂2 : c, b, a. By efficiency, f (P̂) ∈ {c, b}.
W.l.o.g., assume that

f (P̂) = b. (64)

Let f≻ be the successive elimination rule with associated order a ≻ b ≻ c and let
P ∈ P2. We will prove that f = f≻. There are two cases to consider:

1.1. there exists i ∈ {1, 2} such that aPib or aPic. Therefore, by (63), efficiency,
and the definition of f≻, f (P) = f≻(P).
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1.2. bPia and cPia for each i ∈ {1, 2}. If t(P1) = t(P2), then by efficiency f (P) =
t(P1) = f≻(P). Assume now that t(P1) ̸= t(P2). Then, by anonymity and (64),
f (P) = f (P̂) = b = f≻(P).

2. f (P) ̸= t1(Pi) for each P ∈ P2 and each i ∈ {1, 2}. First, let P̂ ∈ P2 be such that
P̂1 : b, c, a and P̂2 : c, b, a. By efficiency, f (P̂) ∈ {b, c}. Assume, w.l.o.g., that f (P̂) = b.
Second, let P ∈ P2 be such that P1 : b, a, c and P2 : a, b, c. By efficiency, f (P) ∈ {b, a}.
Assume, w.l.o.g., that f (P̂) = a. Third, let P̃ ∈ P2 be such that P̃1 : c, a, b and
P̃2 : a, c, b. By efficiency, f (P̃) ∈ {c, a}. Assume, w.l.o.g., that f (P̃) = c. We will
prove that f is a A-maxmin rule⋆ with associated binary relation ≻⋆ where b ≻⋆ c,
a ≻⋆ b, and c ≻⋆ a . This is, we need to show that

f (P) = max
≻⋆

M(P) (65)

for each P ∈ P2. To do so, let P ∈ P2. If P ∈ {P̂, P, P̃}, it is clear that (65) holds.
Assume P ∈ P \ {P̂, P, P̃}. There are three cases to consider:

2.1. t(P1) = t(P2). By efficiency, f (P) = t(P1) = max
≻⋆

M(P), so (65) holds.

2.2. t1(P1) ̸= t1(P2). As |X| = 3, there is x ∈ X such that {x} = X \ {t3(P1), t3(P2)}.
Therefore, as f (P) ̸= t1(Pi) for each i ∈ {1, 2} (see hypothesis of Case 2),
f (P) = x. Furthermore, as t3(P1) ̸= t3(P2), M(P) = {x} and then, (65) holds.

2.3. t(P1) ̸= t(P2) and t1(P1) = t1(P2). Then, (P1, P2) = (P′
1, P′

2) with P′ ∈ {P̂, P, P̃}.
By anonymity and the fact that (65) holds for P′,

f (P) = f (P′) = max
≻⋆

M(P′) = max
≻⋆

M(P).

Therefore, f is a successive elimination rule or an A-maxmin⋆ rule, as stated. □
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